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Abstract

We construct in this paper multiresolution analysis and the associated wavelet
basis on a compact bounded domain of Rn or a compact Riemannian mani-
fold M of dimension n (n ∈ N). All bases constructed here are generated by
a finite number of basic functions and have location properties. To realize
this object, we prove at first some lemmas of algebra and functional analysis.
Then, we characterize some functional spaces with new norms.
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1. Introduction

Wavelet method has a great interest in signal and image processing. The
construction of wavelet bases on bounded domains has been an active field
for many years and extensively discussed in literature ( [1], [5] and [7]). This
topic is widely used in many scientific domains as numerical analysis or theo-
retical physics and successfully applied to many problems in Geomathematics
or Geophysics.. The most of constructions are based on the decomposition
method, introduced by Z. CIESIELSKI and T. FIEGEL in 1982 ( [3] and
[4]) to construct spline bases of generalized Sobolev spaces W k

p (M) (k ∈ Z
and 1 < p < ∞) on a Riemannian manifold M . In 1997, the decomposition
method was used by A. COHEN, W. DAHMEN and R. SCHNEIDER ( [6]
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and [7]) to construct biorthogonal wavelet bases (ψλ, ψ̃λ)λ∈∇ of L2(Ω) where
Ω is a bounded domain of Rd (d ∈ N) ; these bases were shown to be bases of
Sobolev spaces Hs(Ω) for |s| < 3

2
. There are others constructions based on

the decomposition method as well by A. CANUTO and coworkers [1] and by
R. MASSON ( [2] and [12]). These bases are continuous but not differentiable
and have never been implemented. Moreover, there is a slight difficulty in
their presentation, due to notational burden and it is often unclear how to
get other regularity Sobolev estimates than for |s| < 3

2
. A. Jouini and P.G

Lemarié-Rieusset ([9])constructed in an elementary way two multiresolution
analyses on the L-shaped domain which are adapted to higher regularity
analysis (namely, to the study of the Sobolev space Hk, k ∈ Z).

Given M a bounded domain of Rn or a compact Riemannian manifold
of dimension n (n ∈ N), we would like to construct a multiresolution analy-
sis and the wavelet basis by following the minimization method to construct
some special functions. Let ∆ a Beltrami’s Laplacian operator, xi a sequence
of separated nodes, Fj an increasing sequence and dj non-negative real num-
bers satisfying :

i) Any sphere with radius dj contains at most a point of Fj.

ii) Any sphere with radius c.dj contains at least a point of Fj.

iii) given a dj satisfying
1
c
dj ≤ dj+1 ≤ dj

Such a sequence exists , we need just to consider diadic points and positive
real numbers such that dj = d

2j
then we have 1

c
dj ≤ dj+1 ≤ dj (c = 1

2
is

convenient), the points (xj) satisfy di �=j(xi, xj) > d. We construct a collection
of functions

(
ψj+1,λ

)
λ∈Tj

which form an orthonormal basis of Wj satisfying

the following location properties

|ψj+1,λ| ≤ Ce
− γd(x,λ)

dj ∀λ ∈ Tj

| ∂
α

∂xα
(ψj+1,λ)| ≤ C ′e

− γd(x,λ)
dj ∀λ ∈ Tj |α| < s− n/2

and this collection form an orthonormal basis of M with the location proper-
ties. Moreover, This wavelet basis is also adapted to the study of the Sobolev
space Hs(M) s ∈ Z). The present construction of orthogonal analyses differs
from the previous one in the sense that these analyses are generated by a
finite number of simple basic functions and have better stability constants.
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The contents of this paper is as follows.
In the second section, we prove equivalent norms in Sobolev spaces on

a Riemannian compact manifold. These equivalences have a fundamental
impact on our work

In the third section, we study the solution of minimization problem and we
construct orthogonal multiscale spaces which are very useful for construction
of a multiresolution analysis on the manifold. Next, we prove decay to infinity
of splines which are very useful for wavelets.

In the last section, we construct on M a multiresolution analysis and
the associated wavelet bases which are generated by a finite number of basic
functions.

2. Equivalent Norms in Sobolev spaces

Denote
Hs(M) = {f ∈ L2(M), (−∆)s ∈ L2(M)}.

Then Hs(M) is a Hilbert space equipped with the norm ||(I + (−∆))s/2f ||2

Proposition 2.1. . We have the following equivalence

||f ||Hs ∼
[
c||(−∆)s/2f ||2 + c′

(∑
λ

|f(xλ)
2|
)1/2]2

(1)

The proof of this result exists in [8].

Proposition 2.2. Let F be a set of points defined by a partition F =
⋃
j

Fj

and
Ks = {f ∈ Hs/∀λ ∈ F, f(xλ) = 0}.

If s > n/2, the set (−�)s/2Ks is closed in L2. Moreover, V s is closed in L2

and the orthogonal of V s is (−�)s/2Ks.

Proof. First let us show

‖
∑
λ

aλφλ‖Hs ∼

(∑
λ

|aλ|2
)1/2

(2)
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For an integer s, we have

‖
∑
λ

aλφλ‖Hs ∼
∑
|α|≤s

∫

V

| �α (
∑
λ

aλφλ)|2

∼
∑
|α|≤s

∑
λ

∫

B(xλ,d/2)

| �α (
∑
λ

aλφλ)|2

∼
∑
|α|≤s

∑
λ

∫

B(xλ,d/2)

| �α (aλφλ)|2

∼
∑
λ

|aλ|2
∑
|α|≤s

∫
| �α (φλ)|2

∼
∑
λ

|aλ|2‖φλ‖2Hs

∼
∑
λ

|aλ|2

We also have

‖
∑
λ

aλδ(x− xλ)‖Hs ∼

(∑
λ

|aλ|2
)1/2

(3)

In fact

∑
λ

|aλ|2 = 〈
∑
λ

aλδ(x− xλ).
∑
λ

aλφλ〉

≤ ‖
∑
λ

aλδ(x− xλ)‖H−s‖
∑
λ

aλδ(x− xλ)‖Hs

≤ ‖
∑
λ

aλδ(x− xλ)‖H−sCs

(∑
λ

|aλ|2
)1/2

≤ Cs‖
∑
λ

aλδ(x− xλ)‖H−s



Variables exponent p(x)-Kirchhoff type problem with variable potential and convection 2255

Reciprocally, if s > n/2 we have by Schwartz inequality

|〈
∑
λ

aλδ(x− xλ), f〉| ≤

(∑
λ

|aλ|2
)1/2(∑

λ

|f(xλ)|2
)1/2

≤

(∑
λ

|aλ|2
)1/2

Cs‖f‖Hs

‖
∑
λ

aλδ(x− xλ)‖H−s ∼ Cs

(∑
λ

|aλ|2
)1/2

This proves the norm equivalence. The closed subspace of H−s of linear
combinations of δ(x− xλ) where the coefficients (aλ) ∈ L2(F ). Recall

V s = {f ∈ l2, (−�)s/2f =
∑
λ

aλδ(x− xλ)}

Denote B the subspace of H−s generated by (δ(x− xλ)) and the function

V s −→ B
f �−→ (−�)s/2f

is continuous , and V s is a closed space. Moreover, if f ∈ V s

f ∈ L2 then (−�)s/2f ∈ H−s ‘

(−�)s/2f ∈ H−s (f ∈ L2)∑
λ

|aλ|2 ≤ ∞ (see (3))

(−�)s/2f ∈ H−σ (∀σ > n/2)

because the norm equivalence is established for all s > n/2. Then, for
s− σ > n/2, we have

(−� f)s/2f ∈ H−(s−σ)
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. In fact, we have

‖f‖Hσ ∼

(∫ ∞

0

dEλ(f, f)

)1/2

+

(∫ ∞

0

λσdEλ(f, f)

)1/2

‖(�)s/2f‖H−(s−σ) ∼

(∫ ∞

0

λsdEλ(f, f)

)1/2

+

(∫ ∞

0

λsλ−(s−σ)dEλ(f, f)

)1/2

∼

(∫ ∞

0

λsdEλ(f, f)

)1/2

+

(∫ ∞

0

λσdEλ(f, f)

)1/2

<

< +∞

f ∈ L2, then

‖f‖2 =

(∫ ∞

0

dEλ(f, f)

)1/2

< +∞

and for (σ < s− n/2) we have f ∈ Hσ and f ∈ Hs.
Let prove now a stronger result. If f ∈ Ks, then f(xλ) = 0, ∀λ. From

proposition 2.1,we have

‖f‖Hs ∼ ‖(−�)s/2f‖2
and the continuity of the following applications

Hs −→ C
f �−→ f(xλ)

gives that Ks is closed because Ks = f−1(0). Then Ks provided with the
norm ‖‖Hs is a Banach space. The following application

Ks −→ (�)s/2Ks

f �−→ (−�)s/2f

is linear, bijective (f ∈ L2) and bicontinuous because of the norms equiv-
alences (isomorphism) then, (−�)s/2Ks provided with the L2−norm is a
Banach space and (−�)s/2Ks is a closed space.
Let us show that V s and (−�)s/2Ks are orthogonal. If f ∈ V s and g =
(−�)s/2h, h ∈ Ks, then
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〈f, g〉 = 〈f, (−�)s/2h〉
= 〈(−�)s/2f, h〉
=

∑
λ

aλ|f |h̄(xλ)

= 0

because h̄(xλ) = 0 and h ∈ Ks.

Inversely, if f ∈

(
(−�)s/2Ks

)⊥

and g ∈ D(V ). For h ∈ Ks, denote

h(x) = g(x)−
∑
λ

g(xλ)φ(xλ)

then
(−�)s/2 ∈ (−�)s/2Ks

but

f ∈

(
(−�)s/2Ks

)⊥

then
〈f, (−�)s/2h〉 = 0

and we have

〈f, (−�)s/2g〉 = 〈f,
∑
λ

g(xλ)(−�)s/2φλ(x)〉

=
∑
λ

〈f, (−�)s/2φλ〉ḡ(xλ)

We conclude that

(−�)s/2f =
∑
λ

〈f, (−�)s/2φλ〉δ(x− xλ)

and f ∈ V s. Proposition 2.2 is completely proved.
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3. The solution of minimization problem

The object of this section is to solve the problem (P : find a function
f ∈ Hs(M) such that f(xλ) = F (xλ) minimizing

∫
M
|(−�)s/2f |2 for all

functions such that f(xλ) = F (xλ) for F ∈ Hs(M).

Theorem 3.1. For s > n/2, the problem (P ) has a unique solution f0. This
solution is the unique element f0 ∈ V 2s such that

f0(xλ) = F (xλ)

and we have
f0 =

∑
λ

F (xλ)L
s
λ

where Ls
λ ∈ V 2s is the unique element such that

Ls
λ(xj) = δλ,j.

Proof. Suppose that the solution named f0 of problem P is known, then
there exists an other function of Hs such that

(f(xλ) = F (xλ) ∀λ) ⇐⇒ (f − f0 ∈ Ks)

From Proposition 2.2, we have

L2 = V s
⊥
⊕ (−�)s/2Ks)

then

(−�)s/2f0 = f0,1 + f0,2

(−�)s/2f = f1 + f2

but f − f0 ∈ Ks, then f0,1 − f1 = 0. We deduce that for any function
satisfying f(xλ) = F (xλ), its projection in V s is fixed and

∀λ ∈ C, ∀h ∈ Ks

‖(−�)s/2f0 + λh‖22 = ‖(−�)s/2f0‖22 + 2Re

(
λ〈(−�)s/2f0, (−�)s/2h〉

)
+ |λ|2

Then, ‖(−�)s/2f0‖2 is minimal if and only if ‖f0,2‖2 = 0 or equivalently
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(−�)s/2f0 ∈

(
(−�)s/2Ks

)⊥

then

(−�)s/2f0 ∈ V s ⇒ f0 ∈ V 2s

We have

(−�)s/2f0 ∈

(
(−�)s/2Ks

)⊥

(−�)s/2(F − f0) ∈ (−�)s/2Ks

then, (−�)s/2(F−f0) is the orthogonal projection of (−�)s/2K on (−�)s/2Ks.
This result provides a way to obtain f0 as follows : We derive F in (−�)s/2F ,
then we project it on (−�)s/2Ks on a function (−�)s/2h , we get h = F −f0
which implies f0 = F − h.

The uniqueness of f0 comes from the injectivity of the application

(−�)s/2 : Hs −→ L2

and (−�)s/2 is an isometry between Bs/2 and L2 where

Bs/2 = {f ∈ ξ
′

0, | (−�)s/2f ∈ L2

the Beppo Levi space. We proved existence and uniqueness of f0. For f0 ∈
V 2s, let us study the structure of this space. We proved that

V s ⊂ Hσ, ∀σ < s− n

2

then
V 2s ⊂ Hs

due to s < 2s − n/2. We have V 2s ⊂ L2 ⊂ Hs, then and as a consequence,

the norms ‖ ‖2 and ‖ ‖Hs are equivalent on V 2s to

(
∑

λ |f(xλ)|2
)1/2

. In

fact, we have due to equivalence 1
(∑

λ

|f(xλ)|2
)1/2

≤ Cs‖f‖Hs
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and due also to equivalence 1

‖f‖2 ≤ C

[(∑
λ

|f(xλ)|2
)1/2

+ ‖(−�)s/2f‖2

]

We have

(
φλ(xj) = δλ,j

)
⇒

(
(f(x)−

∑
λ

f(xλ)φλ(x)) ∈ Ks

)

and

(−�)s/2f − (−�s/2 (
∑
λ

f(xλ)φ(xλ)) ∈ Ks

(−�)s/2f ∈ V s if f ∈ V 2s

then, (−�)s/2f is the orthogonal projection of (−�s/2 (
∑

λ f(xλ)φ(xλ))
⊥

on

(
(−�)s/2Ks

)⊥

Then, we have control of ‖(−�)s/2f‖2 by

‖(−�s/2 (
∑
λ

f(xλ)φ(xλ))‖2 ≤ |(
∑
λ

|f(xλ)|)|

Consequently, we have on M equivalences

‖f‖2 ∼ ‖f‖Hs ∼

(∑
λ

|f(xλ)|2
)1/2

We deduce that on V 2s we have f(x) =
∑

λ f(xλ)Lλ(x) where Ls
λ(xj) =

δλ,j. The functions Ls
λ satisfy the following estimates.

Theorem 3.2. let s ∈ N then the function Ls
λ and its m-order derivatives

are fast decreasing at infinity (m < s− n/2) and for |α| < s− n/2, we have

|( ∂

∂x
)αLs

λ| ≤ Ce−pd(xλ,x)

where (c, p) are two positive constants independent of α.

This Theorem is proved in [8].
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4. Multiresolution analysis and associated wavelets

In this section , we construct at first a multiresolution analysis on the
manifold. Next, we describe the associated wavelet basis. Let s be an even
integer such as s > n

2
. Define

Vj = {f ∈ L2/(−∆)sf =
∑
λ∈Fj

Cλδλ}

. We have the following properties:

i) Vj is a closed subspace of L2 due Proposition 2.2

ii) Vj ⊂ Vj+1 due to Fj ⊂ Fj+1

iii) ∩Vj = {0}}.

In fact , if f ∈ ∩jVj then (−∆)sf should be a sum of dirac masses at points
∩jFj = {g} (any translated point) then (−∆)sf = cδ0 however δ0 /∈ (−∆)sL2

then f = 0. We also have that ∪jVj is dense in L2, in-fact if f ∈ (∪jVj)
⊥ =

∩jV
⊥
j then f = (−∆)sh where h ∈ Hs must be null at the points ∪jFj

(because V ⊥
j = (−∆)sKs

Fj
) which is dense in V. As a consequence, h = 0 and

f = 0
We want to construct an orthonormal basis of Wj. If f ∈ Vj then f =∑

λ∈Fj
a(λ)Ls

j,λ where Ls
j,λ is the unique element of Vj verifying

Ls
j,λ(λ

′) = δλ,λ′ , ∀λ′ ∈ Fj

where Ls
j,λ are the Lagrangian interpolation splines functions, then

(
Ls

j,λ

)
λ∈Fj

is a basis of Vj. For Vj+1, we add the points λ ∈ Fj+1, λ /∈ Fj We begin or-
thonormalization of (Ls

j,λ) ∈ Fj by Gram-Schmidt, we obtain an orthonormal
basis (φs

j,λ) of Vj. Theses functions have the same properties of location as
(Ls

j,λ) by the matrix computation lemma. Let consider a natural supplemen-

tary space W̃j of Vj, then we have

f ∈ W̃j if f(λ) = 0, ∀λ ∈ Fj

This implies that all f ∈ Vj+1 has a unique decomposition f = g + h where

g ∈ Vj
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and f(λ) = g(λ), ∀λ ∈ Fj and h ∈ W̃j.Wehavealsoto

‖g‖2 ≤ c
(∑

λ∈Fj
|g(λ)|2

)1/2

≤ c
(∑

λ∈Fj+1
|f(λ)|2

)1/2

≤ c′‖f‖2Then, we get Vj+1 = Vj⊕W̃j. This sum is direct and non orthogonal.

We consider the following basis of W̃j given by
(
Ls
j+1,λ

)
λ∈Fj+1|Fj

.

Denote
Tj = Fj+1|Fj

We project orthogonally on Wj the functions
(
Lj+1,λ

)
λ∈Tj

, then we have

Λ′
J+1,λ = Ls

j+1,λ −
∑
λ′∈Fj

(
Ls
j+1,λ′φ′

j′,λ′

)
φj′,λ′ (4)

The kernel of the orthogonal projection of Pj ∈ L2(M) on Vj is given by

k(x, y) =
∑
λ∈Fj

φλ
j (x)⊗ φλ

j (y)

If f ∈ Vj+1, then

f = Pif +Qif

=⇒ Id = Pi +Qi

Where Qi is the orthogonal projection on Wj. Then, Qj = Id−Pj. recall
(by theorem 3.2) the properties

|φλ
j | ≤ Ce

− γd(x,λ)
dj and |Lλ

j+1| ≤ Ce
− γd(x,λ)

dj+1

These properties are also valid for the derivatives of order less than s−n/2.
We have

Λs
j+1,λ = Ls

j+1,λ −
∑
λ′∈Fj

〈Ls
j+1,λ, φ

s
j,λ′〉φs

j,λ′

Then, Λs
j+1,λ and Ls

j+1,λ have the same estimations. The functions
(
Λs

j+1,λ

)
λ∈Tj=Fj+1|Fj

form a basis ofWi. We just need to orthonormalize the functions
(
Λs

j+1,λ

)
λ∈Tj=Fj+1|Fj

.

Denote the matrix

G = 〈Λs
j+1,λ,Λ

s
j+1,λ′〉λ,λ′∈Tj

= αλ,λ′∈Tj
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and
∑

αλ,λ′fλf̄λ′ =
∑
λ,λ′

〈fλΛj+1,λ, fλ′Λj+1,λ′〉

= ‖
∑

λΛs
j+1,λ‖22

and we have

C1

(∑
λ2
)
≤ ‖

∑
λΛs

j+1,λ‖2 ≤ C2

(∑
λ2
)

G is defined positive. We compute G1/2, using the property G−1/2G−12 =

G−1, then the family
(
ψs
j+1,λ

)
λ∈Tj

where ψs
j+1,λ =

∑
λ′∈Tj

µλ,λ′Λj + 1, λ′ is an

orthonormal basis ofWj. But we have L
2 = ⊕(Wj)j, then, wegetanorthonormalbasisofL2(M)

with property of fast decreasing at infinity. We have the following result.

Theorem 4.1. We constructed a collection of functions
(
ψj+1,λ

)
λ∈Tj

which

form an orthonormal basis of Wj satisfying the following location properties

|ψj+1,λ| ≤ Ce
− γd(x,λ)

dj ∀λ ∈ Tj

| ∂
α

∂xα
(ψj+1,λ)| ≤ C ′e

− γd(x,λ)
dj ∀λ ∈ Tj |α| < s− n/2

and the assembling forms an orthonormal basis of a Riemannian compact
manifold V with the location properties.

References
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